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Long-term records of phytoplankton blooms in freshwater lakes are necessary both for understanding basin-
scale changes to watersheds and for providing a key constraint for assessing processes driving blooms. However,
due to the inherent constraints of in situ sampling and the short time period covered bymodern space borne sen-
sors, few long-term records exist. Historical data from sensors such as Landsat offer strong potential for creating
new records of past blooms. Here, we use a novel evaluation procedure based on multiple metrics to as-
sess algorithm suitability and robustness for generating long-term bloom records using Landsat 5 imag-
ery. Evaluation metrics are based on bloom presence, spatial distribution, magnitude and timing, using
both in situ Microcystis biovolume and remotely-sensed Cyanobacterial Index (CI) data from MERIS for
2002–2011. Applying this procedure for a test case focusing on Lake Erie's western basin, an algorithm
based on a near infrared thresholdwith simple atmospheric correction through subtraction of the shortwave in-
frared band, combined with an additional “greenness” filter based on a hue threshold, performs best.
Implementing this algorithm for 1984–2001 reveals the long-term trends in peak bloom magnitude prior to
the start of the MERIS and MODIS record (2002–2015), and more than doubles the period of record that can
be used to understand bloomoccurrence and growth for this system.More broadly,we demonstrate that Landsat
observations can be used to identify macro-scale features of blooms. For Lake Erie, the performance of the final
Landsat algorithm is comparable to that of the MERIS CI algorithm, despite Landsat's broad spectral bands and
long revisit time.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Excessive and harmful phytoplankton blooms are a growing threat
in freshwater systems. Blooms have become larger and more frequent
due to anthropogenic phosphorus input (Schindler et al., 2016), and
have been exacerbated by global climate change (Paerl and Huisman,
2009). Shallow, eutrophic systems are especially susceptible, due to
the elevated risk from high nutrient inputs and high light availability
providing favorable conditions for bloom growth. Onewell-studied sys-
tem is Lake Erie, themost productive of the Laurentian Great Lakes. Lake
Erie is an important drinking water source for the region and has expe-
rienced intensifying cyanobacterial blooms in the past decade (Allinger
and Reavie, 2013). The lake's western basin is emblematic of the
growing challenge of managing blooms in freshwater systems, as
onmental Engineering, Stanford

. This is an open access article under
exemplified by a toxic bloom in 2014 that led to a three-day “do-not-
drink” tap water advisory for local residents (Wilson, 2014). Improve-
ments to existing approaches for bloom monitoring and prediction are
necessary in order to better manage the problem of harmful phyto-
plankton blooms.

The information used to guide phosphorus reduction targets for
managing blooms in Lake Erie comes from a relatively small number
of modern bloom events, in large part because less is known about the
severity of historical blooms. For instance, statistical models providing
a quantitative link between nutrient load and bloom severity have
only utilized data on bloom events from 2002 onward (e.g., Bertani et
al., 2016; Obenour et al., 2014; Stumpf et al., 2016; Stumpf et al.,
2012). This is because data on bloommagnitude comesmainly from re-
motely-sensed measurements by the MEdium Resolution Imaging
Spectrometer (MERIS), which collected data from 2002 to 2011, and
from the Moderate Resolution Image Spectrometer (MODIS) thereafter
(ESA, 2016; NASA, 2016a). Most information on blooms prior to 2002 is
based on types and/or locations of observations that are not entirely
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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intercomparable, further exacerbating the challenge (Ho and Michalak,
2015). More observations of historical phytoplankton blooms would
improve current management efforts by adding to the data available
for modeling phosphorus reduction targets. On amore basic level, addi-
tional information on historical blooms would also provide new insight
into processes driving historical variability.

Landsat observations have the potential to provide a longer-term
bloom record for western Lake Erie and other eutrophic systems, as
Landsat has been collecting data since the early 1980s through its The-
matic Mapper sensors. Landsat has been used to identify freshwater
blooms in many other studies (e.g., through measurement of chloro-
phyll-a concentrations: Duan, et al., 2007; Tebbs et al., 2013; Tyler et
al., 2006; or through detection of bloom presence/absence: Duan et al.,
2009). Its spatial resolution (30 m) and long time span have proved es-
pecially useful for inland water investigations (Mouw et al., 2015).
However, Landsat's broad spectral bands (630-690 nm red band and
760–900 nm near-infrared band) make it difficult to identify signals
unique to phytoplankton, because narrower bands are needed to accu-
rately measure shifts in phytoplankton pigment concentrations (e.g., at
670 nm and 700 nm, or around 685 nm, for the best proxies for chloro-
phyll-a, or at 620 nm for phycocyanin; Matthews, 2011). Landsat also
has a long revisit time (16 days in most locations), whichmakes it diffi-
cult both to track changes in phytoplankton abundance and also to reli-
ably obtain cloud-free images (Matthews, 2011; Sayers et al., 2015).

Assessing the potential benefits of using Landsat for characterizing
blooms would substantially advance the state of the science for remote
sensing of inland waters. For Lake Erie, understanding the degree to
which robust estimates of bloom severity can be obtained using
Landsat, especially relative to estimates from MERIS and MODIS,
would be particularly useful for augmenting the record on historical
blooms and thereby informingmodels used to guide nutrient reduction
strategies (Bertani et al., 2016; Stumpf et al., 2016). As the use of MERIS
cyanobacteria detection algorithms for monitoring freshwater lakes has
expanded to more lakes across the eastern United States (Lunetta et al.,
2015), achieving comparable bloom detection with Landsat would also
open up new possibilities formonitoring long term trends across a large
number of inland systems. The additional potential for ongoing moni-
toring of bloom events using Landsat 8 (NASA, 2016b), which was
launched in 2013, furthermotivates the evaluation of Landsat's accuracy
in characterizing blooms.

In this study, we investigate the accuracy with which Landsat can be
used to identify historical blooms in Lake Erie by comparing the outputs
of different Landsat detection algorithms with ten years of data from in
situ sampling and remote sensing. Various Landsat algorithms are eval-
uated based on their ability to identify blooms during a period forwhich
the occurrence of blooms in Lake Erie is relatively well understood (Ho
and Michalak, 2015), and assessed based on the accuracy of their esti-
mates of bloom occurrence, spatial extent, and timing. The aims of this
study are to (i) identify the best algorithm for classifying blooms during
this evaluation period; (ii) characterize the potential uncertainties
associated with that algorithm in hindcasting historical blooms;
and (iii) hindcast bloom extent for western Lake Erie during the period
1984–2001.

2. Materials & methods

2.1. Site description

Lake Erie is the shallowest of the Laurentian Great Lakes in North
America, with an average depth of 19 m (Lake Erie LaMP, 2011). Sepa-
rated into three distinct basins by bathymetry, the western basin is
the shallowest, with an average depth of 7.4 m (Lake Erie LaMP,
2011).Western basin waters receive the majority of the nutrient inputs
to the lake (Maccoux et al., 2016), and have been classified as mesotro-
phic in the 1980s and early 1990s to eutrophic and hypereutrophic
starting from the 2000s (Allinger and Reavie, 2013; Kane et al., 2015).
The majority of the annual nutrient load occurs in the spring, with the
highest productivity occurring over several months in the summer.
Since the mid-1990s, limited phytoplankton surveys have suggested
that summer blooms have increased in biomass and have been populat-
ed primarily by the cyanobacteriumMicrocystis aeruginosa (Allinger and
Reavie, 2013; Lake Erie LaMP, 2011). From2002 to 2015, themedian an-
nual peak bloom size in the western basin was 912 km2, based on data
from Stumpf et al. (2012) and Stumpf et al. (2016), with the largest
blooms occurring in 2011 and 2015 (Michalak et al., 2013; Stumpf et
al., 2016). Based on this increase in severity, nutrient reduction targets
were set by Canada and the U.S. to restore Lake Erie's ecosystem health
and provide protection for the 11 million people for whom Lake Erie
provides drinking water (Lake Erie LaMP, 2011; Scavia et al., 2016).

2.2. Data

We focus on Landsat images covering the western basin of Lake Erie
in July to October for 1984–2011 (i.e., all the years with Landsat 5 data).
Though blooms occasionally extend into the central basin, the western
basin is where bloom biovolume is most highly concentrated (Chaffin
et al., 2011), where in situ samples are available most frequently
(Bridgeman et al., 2013), and where overlapping Landsat scenes offer
a higher frequency of image collection (8 days rather than the 16day re-
turn time). A total of 303 images are available during the selected
months, with 109 scenes during the evaluation period (2002−2011)
and 194 during the historical period (1984–2001). The analysis is
based on images from both the Landsat 5 raw digital number (DN)
and top-of-atmosphere (TOA) reflectance image collections in Google
Earth Engine (Google, 2016), collected originally from the U.S. Geologi-
cal Survey (USGS, 2016). The images in these collections represent Level
1 quantized calibrated values (Qcal) and planetary TOA reflectance (ρλ),
respectively, as defined in Chander et al. (2009):

Qcal ¼
Lλ−Brescale

Grescale
ð1Þ
ρλ ¼ πLλd
2

ESUNλ cos θsð Þ ð2Þ

where
Lλ is the spectral radiance at the sensor's aperture [W/(m2·sr·μm)];
Brescale is the band-specific rescaling bias factor from Chander et al.

(2009) [W/(m2·sr·μm)];
Grescale is the band-specific rescaling gain factor from Chander et al.

(2009) [DN W/(m2·sr·μm)];
d is the Earth-sun distance [astronomical units];
ESUNλ is the mean exoatmospheric solar irradiance [W/(m2·μm)];

and
θs is the solar zenith angle [degrees].
We use two types of observations for algorithm evaluation. The first

data set includesMicrocystis biovolume measurements collected in situ
every 10–20 days at six locations in Maumee Bay at the southwest cor-
ner of thewestern basin (Bridgeman et al., 2013).Microcystis biovolume
is measured by separating the floatingMicrocystis from a vertical plank-
ton tow taken from lake bottom to surface at each location (more details
in Bridgeman et al., 2013). The second data set consists of daily and ten-
day composite Cyanobacterial Index (CI) values of the western basin
calculated from MERIS imagery (Stumpf et al., 2012). The CI algorithm
is a spectral curvature method around the 681 nm band applied to
daily MERIS images acquired from the ESA's Envisat Mission and to
daily MODIS images from 2012 onward (ESA, 2016; NASA, 2016a;
more details in Wynne et al., 2010; Wynne et al., 2008). These two
data sets were selected because they span the 2002–2011 evaluation
period and because they are largely consistent in terms of their assess-
ment of relative bloom magnitudes over this time (Ho and Michalak,
2015).
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2.3. Selection of algorithms to be evaluated

We evaluate eleven Landsat algorithms (Table 1). Although more
complex algorithms are possible, for example ones that utilize machine
learning techniques (e.g., Pozdnyakov et al., 2005), we consider only al-
gorithms that can be implemented on a per-pixel basis. We do this in
order to take advantage of cloud-based parallel computing tools avail-
able via Google Earth Engine that have substantially reduced the time
and resources necessary to perform analyses on remote-sensing imag-
ery (Google, 2016). Among the examined algorithms, six have previous-
ly been recommended for use in freshwater systems (#1–6), while five
are based on broader best practices in the remote sensing literature
(#7–11). Some are intended to measure pigment concentrations
indicative of phytoplankton abundance (either chlorophyll-a or
phycocyanin), while others are more closely tied to binary mea-
sures of bloom presence or absence. To allow a direct comparison
between the algorithms, and also because measurement of pigment
concentrations typically requires sufficient in situ pigment mea-
surements for robust parameterization, we use each algorithm to
characterize bloom presence/absence with a threshold for bloom
classification.

The first four algorithms were gleaned from studies describing
empirical algorithms for remote sensing of inland water quality. Al-
gorithm #1 is based on a ratio of the red and blue bands, two bands
frequently identified in a review of Landsat algorithms for Canadian
lakes (Sass et al., 2007) and also from bio-optical theory indicative of
high chlorophyll-a (N20 mg/m3; Matthews, 2011). Algorithm #2, a
ratio of the red and NIR bands, is also recommended for use in high
Table 1
Algorithms evaluated for tracking bloom occurrence, spatial extent, and timing in Lake Erie.

# Algorithm Algorithm reference(s) Algorithm short name

1 Red to blue ratio Lathrop, 1992 Red to blue

2 Red to near-infrared
ratio

Yacobi et al., 1995 Red to NIR

3 Green to blue ratio Gitelson et al., 1993 Green to blue

4 (Blue minus red) over
green

Mayo et al., 1995 Blue minus red over green

5 Phycocyanin detection,
validated using Lake
Erie datac

Vincent et al., 2004 Phycocyanin detection

6 Near-infrared (NIR),
validated using Lake Tai
data

Duan et al., 2009 NIR

7 NIR with simple
atmospheric correction
(SAC)

Wang and Shi, 2007 NIR with SAC

7b Further refinement of
NIR with SAC (#7), as
discussed in Section 3.1

Gordon, 1978 Improved NIR with SAC
Haydn et al., 1982

8 NIR minus red Tucker, 1979 NIR minus red
9 NIR over red, with SAC Stumpf and Tyler, 1988 NIR over red with SAC

10 NIR over red, with
baseline atmospheric
correction (BAC)d

ESA, 2015 NIR over red with BAC

11 Curvature method
around red band

Wynne et al., 2008 Curvature around red

a B# stands for the band # pixel value in the input data set (i.e., level 1 quantized calibrated
b No threshold performed better than classifying all pixels as “non-bloom.”
c This algorithm was derived from Landsat 7 data, so Landsat 5 bands are calibrated beforeh
d Where: L4 ¼ ðB4−B1Þ þ ðB1−B5Þ

 
850−490
1650−490

!
and L3 ¼ ðB3−B1Þ þ ðB1−B5Þ

 
660−4
1650−
chlorophyll-a situations (Matthews, 2011), and is based on the
assumption that reflectance in the NIR channel is low or close to
zero due to absorption by water. Algorithms #3 and #4 are both rec-
ommended for use in low chlorophyll-a situations (b20 mg/m3;
Matthews, 2011). These two attempts to account for the shift in
reflectance to lower wavelengths and the increased effect of inorganic
suspended solids, respectively, that occur with decreased chlorophyll-a
(Matthews, 2011).

The next two empirical algorithms (#5 and 6) were developed spe-
cifically for individual lakes. Algorithm #5 was developed using Lake
Erie phycocyanin data to assess phycocyanin concentrations (Vincent
et al., 2004). Phycocyanin is an indicator pigment in cyanobacteria,
and has been used to distinguish cyanobacteria fromother types of phy-
toplankton (Dekker, 1993). Algorithm #6, which is based on Landsat's
near-infrared band (Band 4), identifies chlorophyll-a and dense floating
algae under high bloom conditions (Mouw et al., 2015) and has been
used to observe blooms in Lake Tai (Duan et al., 2009).

The remaining algorithms (#7 through 11) apply well-known ap-
proaches from the ocean color, terrestrial vegetation, and atmospheric
correction literatures. Algorithm #7 uses Landsat's shortwave infrared
band as a simple atmospheric correction, in a similar approach to
ocean color processing for turbid waters (Wang and Shi, 2007). Algo-
rithm #8 looks for a difference between Landsat's NIR and red bands,
similar to the NDVI (the Normalized Difference Vegetation Index)
used for observing terrestrial vegetation, providing an implicit atmo-
spheric correction for the NIR band using the red band. Algorithm #9
combines these two variants by adding an atmospheric correction, fol-
lowing others (Stumpf and Tyler, 1988), and algorithm #10 is one
Formula(s)a Threshold for bloom
classification

B3
B1

N0.462

B3
B4

N/Ab

B2
B1

N0.841

ðB1−B3Þ
B2

N/Ab

47:7−9:21ðB3=B1Þ þ 29:7ðB4=B1Þ−118ðB4=B3Þ
−6:81ðB5=B3Þ þ 41:9ðB7=B3Þ−14:7ðB7=B4Þ

N5.93

B4 N0.0327

B4–B5 N0.0277

B4–1.03×B5 N0.0235

Hue=

( B2−B1
B3þ B2−2� B1

B1−B3
B2þ B1−2� B3

þ 1

B3−B2
B3þ B1−2� B2

þ 2

if B1 ¼ minðB1;B2;B3Þ
if B3 ¼ minðB1;B2;B3Þ
if B2 ¼ minðB1;B2;B3Þ

b1.6

B4–B3 N/Ab

ðB4−B5Þ
ðB3−B5Þ

N0.495

ðB4−L4Þ
ðB3−L3Þ

N/Ab

(B4−B3)+0.5(B3−B5) N/Ab

values Qcal for algorithm #5 and planetary TOA reflectance ρλ for all other algorithms).

and according to Vincent et al. (2011).
90
490

!
.
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final variant that includes a baseline atmospheric correction using a
procedure applied by the Sentinel-3 mission for accommodating tur-
bid waters (ESA, 2015). The final algorithm (#11) uses the curvature
method around the red band, and is similar to the spectral shape al-
gorithm for identifying cyanobacteria (Wynne et al., 2008) by
attempting to identify chlorophyll-a absorption relative to adjacent
scattering.

All algorithms except for algorithm #5 use the TOA reflectance
images as input. We do not implement formal atmospheric correc-
tions (e.g. Hadjimitsis et al., 2004) beyond the simple approaches de-
scribed for specific algorithms above. Algorithm #5 uses a different
input because its coefficients are parameterized to dark object
(DO)-subtracted spectral radiance images. However, raw DN images
are instead used as input here because, during initial implementa-
tion, we found that the digital number images resulted in phycocya-
nin values closer to those in the original study (Vincent et al., 2004).
This is likely because revised calibration coefficients in newer
downloaded Landsat data changed the values in spectral radiance
images (Chander et al., 2007). Because raw DN images are not im-
pacted by such updates, they would be closer to the original study's
source data. Although this may impact the applicability of the algo-
rithm across different time periods, because the same DN values on
different dates may correspond to different radiances, we select
this approach in the interest of obtaining the most realistic phycocy-
anin output concentrations possible.
2.4. Algorithm implementation

We use a classification approach for identifying blooms, fitting a
threshold to the output of each algorithm to classify pixels as “bloom”
or “non-bloom” (Table 1). The thresholds used in classification are opti-
mized by maximizing the number of correctly classified pixels for spa-
tially and temporally collocated images based on MERIS CI (Stumpf et
al., 2012) using a nearest-neighbor sampling technique (Google, 2016:
https://developers.google.com/earth-engine/resample). The fitted
thresholds are therefore as close as possible to the MERIS CI threshold
for a bloom, 0.001 CI, intended to be equivalent to 105 cells/mL.

We use this approach for three reasons. First, there are not enough
measurements of summer pigment concentration in western Lake Erie
(either chlorophyll-a or phycocyanin) to robustly assess correlations
with algorithm estimates. Combining all chlorophyll-a measurements
from the U.S. Environmental Protection Agency and Environment
Canada for 2002–2011, for example, yields only 111 measurements
over 10 years (Environment Canada, 2012; EPA GLNPO, 2012), which
is small relative to studies that have used in situ chlorophyll-a to vali-
date remote sensing algorithms for similar lakes (e.g., Palmer et al.,
2015, with 692 samples over six years). Moreover, the 111 measure-
ments were all taken during single cruises in late July or early August
each year (when blooms are just forming) rather than spanning the
bloomseason (July through September), limiting the number of concur-
rent Landsat overpasses and potentially biasing the parameterization
toward lower chlorophyll-a values. Second, Landsat's broad bands are
known to yield a low signal-to-noise ratio that makes discerning
between fine gradations in water quality challenging (Matthews,
2011). Third, binary classification of pixels as “bloom” or “no bloom”
has previously been shown to serve as a good proxy for bloom magni-
tude (e.g. for bloom biomass in Lake Erie: Stumpf et al., 2012; and for
bloom severity in the Baltic Sea: Kahru and Elmgren, 2014). The classi-
fication approach is thus appropriate given the constraints of in situ
data and the low signal-to-noise ratio of Landsat.

Once classification thresholds are identified for each algorithm, the
thresholds are applied to each of the 109 evaluation period Landsat im-
ages to create binary bloom maps. Algorithms for which no threshold
performs better than simply classifying all pixels as “bloom” or “non-
bloom” are not included in this subsequent evaluation.
2.5. Algorithm evaluation

We use a multi-faceted approach to evaluate the algorithms based
on the binary bloom maps (Table 2), comparing algorithm output
with synoptic estimates based onMERIS CI (Stumpf et al., 2012) and in-
dividual observations collected in situ (Bridgeman et al., 2013). Previous
studies introducing new algorithms have often relied on simple correla-
tion statistics based on single data sets, and have been shown to yield
results that are poorly comparable to other measurements for Lake
Erie (Ho and Michalak, 2015). This proposed approach is expected to
provide a more robust evaluation of algorithm performance.

We use the Bridgeman et al. (2013) data to evaluate algorithm accu-
racy in identifying bloom occurrence at specific locations (Table 2). In
situ Microcystis biovolume measurements are compared to individual
pixel values at the same coordinates from the Landsat overpass taken
within three days of in situ sampling. We ran a sensitivity analysis to
confirm that using observations taken within three days did not de-
crease algorithm accuracy relative to using observations from within
12 hours or one day. The biovolume data are transformed into binary
data using the threshold for severe blooms from the Ohio Environmen-
tal Protection Agency (10 mm3/L; Kasich et al., 2014).

We use the Stumpf et al. (2012)MERIS CI data to evaluate algorithm
accuracy over the entire basin. First, we assess each algorithm's ability to
correctly categorize blooms by their relative magnitude. The relative
magnitude of blooms is a natural metric, especially during 2002–2011
when blooms fall into three relatively distinct categories of small, medi-
um, and large blooms (Bridgeman et al., 2013; Stumpf et al., 2012). We
first assesswhether each algorithm correctly identifies 2011 as the larg-
est bloom, and also what fraction of the set of four other large blooms
(2003, 2008, 2009, 2010) based on the evaluation data sets are identi-
fied as such by each algorithm (Table 2). We then do the same for the
three smallest blooms (2002, 2005, and 2007) based on the two evalu-
ation data sets (Table 2). This approach assesses algorithm skill in mak-
ing comparative statements about bloom magnitude between years.

Second, we evaluate algorithm skill in characterizing bloom magni-
tude, using individual MERIS CI images. CI-based bloom images are
matched to the dates of Landsat overpasses (within one day), yielding
61matched pairs. The pairs are evenly distributed across all years except
for 2006,when therewere large gaps in theMERIS imagery (Stumpf et al.,
2012). Coefficients of determination and root mean squared errors from
weighted least squares regression between the Landsat- andMERIS-esti-
mated bloom areas are used to assess algorithm skill in characterizing
bloom size variability (Table 2). Weighted least squares regression is
used in situations where the measurements (in this case, the areas from
each Landsat image) have uncorrelated but variable uncertainties
(Carroll and Ruppert, 1988). The weights in this regression are based on
the cloudy areas in the Landsat images (Eq. 3), to account for the higher
uncertainties in cloud-obscured images. Clouds are identified using the
Landsat Automatic Cloud Cover Assessment procedure (Irish, 2000).

wi ¼ 1−
c

cmax

� �
ð3Þ

where
wi is theweight applied for the ith Landsat-MERIS bloom area pair in

weighted linear regression [unitless];
c is the cloudy area in image [km2]; and
cmax is the maximum possible cloudy area, set equal to 4000 km2,

approximately the size of the western basin.
We repeat this regression procedure using a subset of the data with

only the largest bloom areas for each year (i.e., only 10 pairs of images
versus 61, Table 2). This approach evaluates an algorithm's ability to
provide useful data for water quality management, because estimates
of annual maximum bloom magnitude are used to set nutrient input
targets (Scavia et al., 2016). To more accurately measure bloom peak,
we constrain the selection of the largest bloom area each year to dates

https://developers.google.com/earth-engine/resample


Table 2
Description of metrics used in comprehensive evaluation approach based on bloom occurrence, spatial extent, and timing. The color shading is intended to enable easy mapping to the
results presented in Fig. 2.

Evaluation 

data set 

Extracted variable Evaluation 

metric 

Metric description 

Bl
oo

m
 o

cc
ur

re
nc

e 

Bridgeman 

et al., 2013

In situ Microcystis

biovolume

% samples 

correct 

Percentage of biovolume samples correctly 

identified (either as bloom or non-bloom) 

Stumpf et 

al., 2012 

Ranking of years 

by bloom size 

Is 2011 

bloom 

largest? 

Whether the 2011 bloom ranks largest out of all 

years 

% large 

blooms 

correct 

Percentage of overlap among the years with the 

next four largest blooms 

% small 

blooms 

correct 

Percentage of overlap among the three years 

with the smallest blooms 

Bl
oo

m
 s

pa
ti

al
 e

xt
en

t 

Bloom size in 

individual images 

(n=61) 

wr2
all

Coefficient of determination from weighted least 

squares regression of Landsat vs. MERIS 

bloom size based on individual images 

RWMSEall

[km2] 

Root weighted mean squared error of bloom 

size from individual Landsat images relative to 

MERIS estimates 

Maximum bloom 

size each year 

(n=10) 

wr2
max

Coefficient of determination from weighted least 

squares regression of Landsat vs. MERIS 

bloom size based on the maximum bloom size 

observed using each instrument 

RWMSEmax

[km2] 

Root weighted mean squared error of maximum 

observed bloom size from Landsat relative to 

MERIS estimates 

Bl
oo

m
 t

im
in

g 

Date of peak bloom 

selecting only 

overlapping dates 

RMSEoverlap

[days] 

Root mean squared error of date of bloom peak  

for Landsat vs. MERIS, only using images from 

overlapping dates 

Date of peak bloom 

selecting all 

possible dates 

RMSEall

[days] 

Root mean squared error of date of bloom peak  

for Landsat vs. MERIS, using all available 

images 
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where the water temperature is above 20 °C, using water temperature
data from the National Data Buoy Center (NDBC) Station 45005
(NOAA NDBC, 2014). This threshold is the midpoint of the temperature
range estimated for cyanobacterial growth (Robarts and Zohary, 1987).

Third, we evaluate algorithm skill in estimating peak bloom timing
by comparing the dates of peak bloom area for the Landsat algorithms
vs. MERIS CI. This comparison is performed using two subsets of data:
the first, only selecting images where Landsat and MERIS have overlap-
ping dates (within one day), and the second, allowing all data fromboth
sensors (Table 2). The first comparison highlights algorithmic limita-
tions (i.e., differences in timing resulting from the fact that the Landsat
and MERIS CI algorithms interpret information from concurrent dates
differently). The second comparisonmeasures accuracywhen consider-
ing both algorithmic and temporal sampling limitations (i.e. differences
in timing resulting both from algorithmic differences and the fact that
the two sensors may not be observing the lake on the same dates).

Overall, this multi-metric approach for evaluating bloom detection
provides a comprehensive picture of algorithm strengths and weak-
nesses, beyond evaluation and validation approaches that have been
used traditionally. The results of this approach, and conclusions on algo-
rithm suitability for generating historical estimates of bloom conditions,
are presented in Sections 3.1 and 3.2 followed by an exploration of his-
torical results using the best algorithm in Section 3.3.
3. Results & discussion

3.1. Algorithm intercomparison and performance

For five of the algorithms that were evaluated (#2, 4, 8, 10 and 11),
simply classifying all pixels as “non-bloom” outperforms all thresholds,
indicating that these algorithms provide no useful information on
bloom presence for the western basin of Lake Erie based on the imple-
mented classification approach (Table 1). For the remaining algorithms
(#1, 3, 5, 6, 7 and 9), the optimized thresholds result in varying levels of
agreement with MERIS CI images of blooms (e.g., Fig. 1) and in situ ob-
servations across the examined metrics.

Results from systematic evaluation of Landsat algorithms suggest
that only a few of the examined algorithms are able to identify the rel-
ative magnitude, size, or timing of blooms using our approach (Fig. 2).
The best of the original algorithms across most metrics is algorithm
#7 (NIR with SAC), performing best across seven of the ten metrics
(and tied with other algorithms for three of these). Algorithm #3
(green to blue) also performs well across many metrics, performing
best for five of the ten metrics (tied with other algorithms for two of
these).

We further optimize the NIR with SAC algorithm (#7) by adding a
weight to the shortwave-infrared (SWIR) band and adjusting this



Fig. 1. Bloom classification images showing algorithm output for prototypical examples of small and large blooms, on September 7, 2010 and September 3, 2011, respectively. Image
highlighted in yellow is the MERIS CI image to which algorithm output images are compared. Classification thresholds for each algorithm are reported in Table 1. Algorithms for which
no threshold performed better than classifying all pixels as “non-bloom” are not shown.
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weight to maximize coherence with the MERIS CI bloom images (i.e.,
adjusting the amount of atmospheric correction provided by Band 5,
similar to Neukermans et al. (2009) and Stumpf and Pennock (1989)
for other sensors). For this “Improved NIR with SAC” algorithm (#7b),
both the weight and the threshold are optimized together to achieve a
new threshold (Table 1). Because of misclassification in some images
due to suspended sediment, we add a secondary filter based on the
“greenness” of the pixel, implemented as hue values below a threshold
fitted fromMERIS data (fitted hue threshold=1.6, Table 1; Haydn et al.,
1982). The improvement in matching the MERIS CI bloom images after
adjusting the weight of the SWIR band and adding the secondary filter
step can be seen through the reduction in nearshore pixels erroneously
identified as “bloom” in Fig. 1, and shouldminimize potential misclassi-
fication errors from events such as storm-induced sediment
resuspension.

The refinements made in algorithm #7b result in improved perfor-
mance across the evaluationmetrics (Fig. 2), producing the best perfor-
mance for nine of the ten examined metrics (tied with the original
algorithm #7 for two of these, and also with algorithm #3 (Green to
Blue) for one of these two). This algorithm is therefore selected as the
best algorithm for evaluating bloom occurrence, spatial extent, and
timing in the western basin of Lake Erie.

Starting with assessing bloom occurrence, this final algorithm iden-
tifies 65% ofmeasurements correctly for the point comparisons to in situ
Microcystis biovolume, compared to 63% for the original algorithm #7
and 60% for the next best algorithm. For identifying individual years
with blooms, algorithms #7 and #7b are two of only three algorithms
to correctly identify 2011 as the year with the largest bloom (Fig. 2).
The final algorithm also correctly ranks 6/7 (85%, highest among all al-
gorithms) of the four next largest and the three smallest blooms cor-
rectly, and is the only algorithm to rank all of the small blooms
correctly (3/3). For assessing bloom spatial extent, the final algorithm
achieves the highest weighted r2 with MERIS CI images out of all algo-
rithms, (wr2all = 0.64 versus wr2all = 0.54 for the next best algorithm
(#7)) and also the lowest root weighted mean squared errors
(RWMSEall = 262 km2 versus 297 km2 for the next best algorithm
(#7)). For the maximum bloom area subset (n = 10), the final algo-
rithm also performs best, with the highest weighted r2 (wr2max =
0.71 versus 0.68 for the next best algorithm (#3), Fig. S1) and lowest
mean error (RWMSEmax = 352 km2 versus 543 km2 for algorithm #7
and 988 km2 for the next best). When measuring bloom timing based
on images for overlapping dates, the final algorithm again performs
best, with an RMSEoverlap of 15 days. Notably, algorithm #3 (Green to
blue) performs marginally better than the final algorithm at identifying
peak bloom timing when considering all available images.

All other algorithms perform relatively well for one or a fewmetrics,
but not consistently well overall (Fig. 2). For example, the NIR over red
with SAC algorithm (#9) is the only algorithm other than NIR with SAC
(#7) and Improved NIR with SAC (#7b) to identify 2011 as the largest,
but performs poorly at estimating bloom timing. Taken all together,
these findings demonstrate the importance of using a multi-faceted ap-
proach for algorithm evaluation. Our results show that no algorithm
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outperforms all others across all the examined metrics, indicating that
the various algorithms capture different specific features of blooms.
This finding supports the conclusion that improved evaluation ap-
proaches based on multiple metrics provide more accurate overall as-
sessment of algorithm strengths and limitations.

3.2. Potential for classifying historical blooms

Overall, our results show that the Improved NIR with SAC algorithm
(#7b) performs best inmeasuring bloom occurrence, spatial extent, and
timing (Fig. 2). Visual inspection of maps of peak bloom extent by year
moreover indicates that the spatial distribution of the observed blooms
agrees well with other remote sensing studies of blooms in Lake Erie
(Fig. 3; Fig. S2), and visual comparison to true color images (not
shown) does not suggest any conspicuous sources of error (e.g., sun
glint or haze). In order to further gauge the potential for hindcasting es-
timates using the final selected algorithm,we next exploremore deeply
the years for which estimates are less consistent with the size and
timing of blooms observed from MERIS CI.

The final algorithm estimates of peak bloom size performwell at re-
producing estimates from MERIS CI, except for notable differences in
2006 and in 2010 (Fig. 4). We find that the large differences in peak
bloom size during those two years are primarily the result of missing
MERIS data in 2006 and high cloud cover in the Landsat images in
2010. In 2006, Landsat captures a peak during the first week of Septem-
ber, coinciding with a gap in the MERIS data (Fig. 4). This suggests that
the peak in the bloom occurred during this gap, and that the Landsat es-
timate is likely be to more accurate than the MERIS estimate of peak
bloom size for that year. The in situMicrocystis biovolume observations
confirm this, indicating a larger bloom in 2006 than 2005 or 2007. In



Fig. 3. Bloom image from scene with maximum observed bloom size using the Improved
NIRwith SAC algorithm (#7b in Table 1) for 2002 to 2011. See Fig. S2 for equivalentMERIS
CI images.
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Fig. 4.Comparison of Landsat ImprovedNIRwith SAC algorithmandMERIS CI bloomareas
for 2002–2011. The grey bars for MERIS represent estimates of 10-day average areas,
while the green bars for Landsat represent estimates based on individual scenes. The
empty rectangles represent cloud cover over the western basin in Landsat scenes, where
the presence or absence of a bloom could not be directly assessed. Letters ‘L’ and ‘M’ at
the top of each panel represent the peak observed bloom date for a given year for
Landsat andMERIS, respectively. Gaps inMERIS data in 2006 are denotedwith an asterisk.
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2010, on the other hand, clouds obscure the Landsat image coinciding
with the MERIS-estimated bloom peak on September 23 (Fig. 4), and
there are no other clear images of that bloom. Viewed within the con-
text of estimates from other years, these results suggest that Landsat's
long revisit time does not hinder bloom size estimates in nine of the
ten cases examined here, and can even improve upon estimates from
other sensors when those other data sets have gaps.

Algorithm estimates of the peak bloom date are similarly consistent
with those fromMERIS CI formost years, but the differences in 2002 and
2005 are much larger (57 and 44 days, respectively; Fig. 4). The large
differences for peak bloom timing in 2002 and 2005, however, aremost-
ly due to the fact that those years have little bloom activity overall. The
blooms are small, and there is a lack of clear seasonality in the blooms
for those years (Fig. 4). As a result, a large difference in matching
“bloom peak” timing for those years does not mean that the Landsat al-
gorithm is performing poorly. For years with medium or large blooms
(i.e., 2003, 2004, 2006, 2008, 2009, 2010, and 2011), the average differ-
ence between Landsat and MERIS peak bloom estimates is just 10 days.

We find that these two sets of years (2006 & 2010, 2002 & 2005)
skew themean error statistics reported for size and timing in the previ-
ous section, respectively, and that indeed the final algorithm performs
even better than suggested by the overall metrics for the majority of
years. Peak bloom size is estimated within 250 km2 for eight out of
ten years, which is a small error relative to the 4110 km2 area of the
western basin as outlined in Fig. 3. Peak bloom date is captured within
8 days and 16 days in five and eight out of the ten years, respectively,
a promising result given the 8-day revisit time for Landsat images
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over Lake Erie. Taken together, these findings suggest that differences
between Landsat and MERIS are relatively minor and do not preclude
the use of Landsat to hindcast blooms.

One potential issue is that Landsat may underestimate bloom size in
scenes with high cloud cover, but even this only led to substantial un-
derestimation of the peak bloom area in one out of ten years. For char-
acterization of historical blooms, tagging cloud cover in areas of the
western basin adjacent to observed bloom areas could be used as an
empirical approach to assess cloud-cover-induced uncertainty in
bloom area estimates. This approach is implemented when exploring
historical blooms in Section 3.3.

Overall, we find that the accuracy of Landsat-derived bloom esti-
mates is not significantly hindered by its spectral and revisit cycle limi-
tations. We note, however, that the long duration of phytoplankton
blooms in this system (up to several months) serves to limit the impact
of Landsat's long revisit time, and applicability to systemswhere blooms
are more episodic or where Landsat has a longer revisit time would
need to be further evaluated.

3.3. Hindcasted bloom results

Applying the algorithm to the period 1984–2001 reveals the long-
term trends in peak bloom magnitude prior to the start of the MERIS
and MODIS record (Fig. 5). This expands the historical record of blooms
in Lake Erie by nearly two decades, more than doubling the period of re-
cord that can beused to understand bloomoccurrence and growth. Peak
bloom areas decrease gradually from 1984 (760–910 km2) to 1991
(210–320 km2), where the ranges represent the observed peak bloom
extent (lower bound) and the extentwith additional cloudy area tagged
manually as potentially obscuring bloom (upper bound) (Fig. 5). The ob-
served decline in the late 1980s is consistentwith significant decreases in
phytoplankton biomass and chlorophyll-a following reductions in phos-
phorus loading reported in the literature (e.g., Allinger and Reavie,
2013; Makarewicz, 1993; Munawar and Munawar, 1999). The period of
declining bloom areas is followed by a large bloom in 1992 (1050–
1360 km2), and then a subsequent period with low bloom activity from
1993 to 2000 (Fig. 5). Starting in 2001, larger blooms become more fre-
quent, and bloom size shows considerably more interannual variability.
This progression from low bloom activity to larger and more frequent
blooms is consistent with known increases in phytoplankton biomass
(e.g., Conroy et al., 2005; Lake Erie LaMP, 2011).

Given that the uncertainty associated with these Landsat-derived
peak bloom areas is approximately 350 km2, and for the majority of
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Fig. 5. Largest observed bloom areas estimated via Landsat Improved NIR with SAC (1984–201
additional cloud-obscured potential bloom area (yellow). The number on top of each bar indic
years is below 250 km2 (Section 3.2), these broad temporal trends
are expected to be robust. There is substantial cloud cover in the vi-
cinity of the bloom in images of the peak bloom in 1989, 1994, and
1997, but this does not impact the overall trends in bloom size and
variability as a whole (Fig. 5; Fig. 6). The overall consistency between
the historical trends observed here and existing understanding of
long-term trends in Lake Erie phytoplankton blooms (e.g., Conroy
et al., 2005; Makarewicz, 1993) also suggests that the algorithm per-
forms well even prior to Microcystis sp. dominance starting in the
late 1990s.

We note that an initial analysis of the Landsat record also sug-
gested a large outlier “bloom” in 1991 (Fig. 5), which was later deter-
mined to represent a false positive. This outlier “bloom” was only
observed by one Landsat image out of the twelve that year, and
lacked the characteristic spatial gradients observed in other blooms
(Fig. 7A, C). Moreover, the difference between the mode in the
near-infrared (Band 4) and the shortwave-infrared (Band 5) for
“bloom” pixels in this image was much greater than in images in
other years (Fig. 7B, D). This behavior is consistent with high concen-
trations of fine aerosol particles in the atmosphere, which would
have scattered light disproportionately in the shortwave-infrared re-
gion relative to the near-infrared (Alexandrov et al., 2008). This dif-
ferential scattering behavior is also more common in continental
aerosols (as would be expected over Lake Erie) versus maritime or
oceanic aerosols (Wang, 2007), further lending credence to this hy-
pothesis. For completeness, we have shown the bloom area implied
by the outlier image for 1991 in Fig. 5, in addition to what we believe
to be a better estimate of the true bloom size for that year based on
the remaining Landsat images.

The outlier “bloom” in 1991 points to the potential impact of at-
mospheric conditions on algorithm performance in some circum-
stances. Given our use of TOA reflectance images as input and
implementation of a relatively simple atmospheric correction ap-
proach, meteorological conditions that affect factors such as water
vapor concentrations and aerosol optical thickness could add uncer-
tainty to bloom areal estimates. In the case of Lake Erie, visual obser-
vation of historical bloom images did not indicate substantial
atmospheric effects (except for the 1991 outlier), and comparison
with historical literature suggests strong coherence in bloom esti-
mates despite the implementation of only a simple atmospheric cor-
rection. The need for a more rigorous approach for quantifying
atmospheric effects (e.g., Barnes et al., 2014) may need to be re-ex-
amined for application to other lakes.
2000 2005 2010 2015

0

1211

12

11

11

11

13

10

11

15

9

10

9

m (Landsat)

1) and MODIS CI (2012–2015) algorithms. Bars indicate observed bloom area (green) and
ates the number of Landsat images available in July to October each year.



Fig. 6. Images of largest observed blooms for 1984–2001 displaying bloom-classified values in green (bloom) and black (non-bloom). Cloud pixels are shown in yellow (clouds in the
vicinity of bloom) and white (other clouds).
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4. Conclusions

In this study, we assess the effectiveness of Landsat observations for
identifying historical phytoplankton blooms in a shallow eutrophic lake,
by comparing algorithms based on Landsat imagery to in situMicrocystis
biovolume and remotely-sensedMERIS CI observations.We evaluate an
initial set of eleven Landsat algorithms for 2002–2011 using a novel
evaluation procedure based on accurate identification of bloom occur-
rence, spatial extent, and timing.We find that a near-infrared threshold
algorithmwith simple atmospheric correction (Algorithm#7) performs
best, and further optimize this algorithmwith a secondary greenness fil-
ter based on a hue threshold (Algorithm #7b). The final algorithm
outperforms the other 11 evaluated algorithms across nine of the ten
evaluation metrics.

The novel evaluation procedure presented here also demonstrates
the utility of a multi-metric approach for assessing algorithm perfor-
mance. The procedure intercompares algorithms based on their accura-
cy at identifying different aspects of the annual blooms (e.g., bloom
occurrence versus bloom timing), yielding a more accurate assessment
of algorithm strengths and limitations relative to previous approaches
based on individual correlation statistics and single validation data sets.

For the final selected algorithm (#7b), exploration of potential
uncertainties for hindcasting historical blooms reveals that differ-
ences between Landsat and MERIS are encouragingly minor, with



Fig. 7. Comparison between false positive “bloom” detected in 1991 (A, B) and a typical bloom from 1992 (C, D). Raw (i.e., before thresholding) ImprovedNIRwith SAC (#7b) values (A, C)
show that the 1991 image lacks the characteristic spatial gradient of blooms. This behavior is due to high pixel values in the near-infrared (NIR) band compared to the shortwave-infrared
(SWIR) band relative to images of actual blooms (B, D). Only “bloom” pixels (i.e., Improved NIRwith SAC (#7b) value above the bloom threshold of 0.0235) are shown in panels B and D.
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underestimation of bloom size in cloudy scenes being the only po-
tential issue of concern. Overall, we find that the final algorithm
can provide accurate estimates of bloom extent and timing during
2002–2011, and that the algorithm can be expected to provide reli-
able information for the period preceding MERIS CI observations.

Applying the best algorithm to scenes for 1984–2001,we present new
quantitative information on historical Lake Erie phytoplankton blooms,
expanding remotely-sensed information on blooms in Lake Erie by nearly
two decades. Bloom size declined in the late 1980s, stayed relatively low
in the 1990s, and increased thereafter. These newdatamake it possible to
assess long-term trends in phytoplankton blooms and provide new in-
sights about historical bloom spatial distributions and timing.

Overall, our findings demonstrate the potential for using Landsat to
generate long-term data on phytoplankton blooms in similar systems.
For example, the novel evaluation procedure presented here could be
used to identify appropriate Landsat algorithms in other systems
where the MERIS CI algorithm has been successfully applied for water
quality monitoring (e.g., Lunetta et al., 2015), especially given evidence
suggesting that the final algorithm selected here performedwell during
periods when different phytoplankton species were dominant. Future
work should also examine factors affecting Landsat's ability to identify
bloom features for other lakes, including examining the impact of
bloom duration on accuracy and the degree to which estimates at
other locations may be more strongly impacted by atmospheric effects.
Application to other systems would also reveal the extent to which this
approach can provide new insights about historical trends in phyto-
plankton blooms across locations.
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